ИНТРА-ИНТРАКРАНИАЛЬНЫЕ МИКРОАНАСТОМОЗЫ: ИДЕОЛОГИЧЕСКАЯ ДИЛЕМАМА И ТЕХНИЧЕСКИЙ ВЫЗОВ
Дубовой А.В.1, Гуляй Ю.С.2, Овсянников К.С.1, Старикова О.В.1
1Федеральный центр нейрохирургии, г. Новосибирск,
2МГМСУ им. А.И. Евдокимова, Москва

CONCEPTUAL AND TECHNICAL CHALLENGES IN INTRACRANIAL-INTRACRANIAL BYPASS REVASCULARIZATION
Dubovoy A.V.1, Gulyay Y.S.2, Ovsyanikov K.S.1, Starikova O.V.1
1 Federal Center of Neurosurgery, Novosibirsk,
2 Moscow State Medical Stomatological University named after A.I. Evdokimov

РЕЗЮМЕ.

ВВЕДЕНИЕ. Статья посвящена оценке результатов хирургического лечения 15 пациентов со сложными и гигантскими аневризмами методом создания интра-интракраниальных анастомозов (ИИКМА), анализу структуры и причин послеоперационных осложнений. Описан клинический случай успешного оперативного вмешательства, в качестве сравнения приведены результаты применения аналогичного метода зарубежными авторами.

ЦЕЛЬ. Оценить результаты хирургического лечения сложных и гигантских аневризм методом создания ИИКМА на момент выпуски, а также в катамнезе, провести анализ причин послеоперационных осложнений.

МЕТОДЫ. В исследовании участвовали пациенты ФГБУ Федерального центра нейрохирургии г. Новосибирск, которым был создан ИИКМА в период с 2013 по 2017 гг. Для оценки результатов лечения были использованы нейрорадиологические методы исследования, модифицированная шкала Rankin, изучение неврологического статуса до и после вмешательства. Период наблюдения составил от 1 месяца до 3 лет.

РЕЗУЛЬТАТЫ. У 15 пациентов были созданы 16 ИИКМА, 13 из которых функционировали на момент выпуски. При контролном опросе в отделении послеоперационном периоде хороший функциональный исход (0-2 mRS) отмечен у 11 пациентов, удовлетворительный (3 mRS) – у 1, и неудовлетворительный (4-6 mRS) – у 1. Во всех случаях выполнено полное выключение аневризмы из кровотока. Из исследования выбыли 2 пациента по причине потери контакта. Всего отменено 5 осложнений, из которых были обусловлены непроходимостью анастомоза, летальный исход наблюдался у 1 пациента.

ЗАКЛЮЧЕНИЕ. Создание ИИКМА представляется эффективным и относительно безопасным методом реваскуляризации, который может быть необходим при лечении сложных и гигантских аневризм. По нашему мнению, основа успешного функционирования этого вида анастомозов – тщательное планирование оперативного вмешательства, навык хирурга и адекватность сосудистого графта, если такой необходим.

КЛЮЧЕВЫЕ СЛОВА: Интра-интракраниальный микроанастомоз, гигантская аневризма, реваскуляризация, передняя мозговая артерия.

SUMMARY.

BACKGROUND. In this article authors present the results of intra-intracranial bypass revascularization in the pool of 15 patients with giant and complex aneurysms. Clinical illustration of successful surgical treatment, structure and causes of postoperative complications have been discussed and compared with analogical reports of foreign colleagues.

OBJECTIVE. To estimate the results (clinical effectiveness and safety) of IICMA revascularization procedure in patients with giant and complex aneurysms with different localization. The control points were at the patient’s discharge, early and late postoperative period. Structure and causes of postoperative complications have been also analyzed.

METHODS. This is a retrospective analysis of 16 IICMA in 15 patients who had been subjected to revascularization surgery in our clinic from August 2013 to July 2017. Patients were used as our own control by the means of CT/MR neurovisualization, neurological status investigation and measuring the degree of disability with the modified Rankin scale. The length of follow-up period varieded from 1 month to 3 years.

RESULTS. In late postoperative period 11 patients had good clinical outcome (0-2 mRS), one patient had satisfactory outcome (3 mRS) and poor outcome was noticed in one patient (4-6 mRS). Two patients were excluded from the study because of loss to follow-up. Notably, we registered 5 complicated cases. Three of them were caused by anastomotic zone occlusion. Mortality: 1 patient. There were no episodes of meningitis, liquor leakage, pseudomeningocele, subarachnoid hemorrhage, thromboembolism or incomplete aneurysm sac occlusion.

CONCLUSION. IICMA bypass revascularization seems to be effective and almost safe procedure, which can be indispensable in some cases of giant and complex aneurysms. In our opinion, successful functioning of IICMA is based on scrupulous preoperating planning, surgeon’s skill and adequate choice of vascular graft if it is necessary.

KEYWORDS: Infracranial-intracranial bypass, giant aneurysm, revascularization, anterior cerebral artery.
Репутация методов лечения, связанных с созданием сосудистых микроанастомозов, среди клиницистов, в особенности нейрохирургов, неоднозначна. Сама по себе идея артифициального дизайна сосудистого русле является многообещающим, потенциально эффективным способом регуляции тока крови, а значит и кровоснабжения мозга с последующим воздействием на его функциональное состояние. Первый церебральный сосудистый анестомоз, выполненный Pool D.P. и Potts D.G. в 1965 году [1, 2], представлялся революционным, мощным инструментом в достижении благородной цели нивелирования патологического влияния различного рода заболеваний головного мозга. Однако первичный восторг и возбужденный интерес сменились разочарованием и более пристальным взглядом на метод, а затем и сомнением в оправданности применения и обоснованности ожидания великолепных результатов [2].

В крупных рандомизированных исследованиях, таких как NASCET (North American Symptomatic Carotid Endarterectomy Trial), ECST (European Carotid Surgery Trial), ACST (Asymptomatic Carotid Surgery Trial), ACAS (Asymptomatic Carotid Atherosclerosis Study) было продемонстрировано, что каротидная эндартерэктомия (КЭАЭ) является лучшим способом профилактики развития ишемического инсульта по сравнению с оптимальной медикаментозной терапией, снизит риск развития инсульта в следующие 2-5 лет [3-6]. Ни один хирург, выполняющий реконструкцию экстракраниальных отделов ВСА, не имеет идеологического диссонанса по поводу рациональности применения этого способа лечения и его влияния на жизнь пациента. В противоположность этому, создание церебральных микроанастомозов до сих пор не нашло столь убедительных доводов в свою пользу, также как и других показаний к тому или иному виду вмешательства [7]. Разумеется, данное утверждение в большей степени относится к церебральной реваскуляризации как методу лечения острой или хронической ишемии головного мозга [8], а не к лечению сложных аневризм или патолитическим операциям при опухолях основания черепа [9-11]. Тем не менее, исследований 1 или 2 степени доказательности, констатирующих эффективность церебральной реваскуляризации для лечения сложных аневризм, вплоть до сегодняшнего дня не существует. Не исключено, что их не будет вовсе вследствие редкости применения метода, малой выборки и невозможности концентрации необходимой большой группы пациентов в руках одного специалиста.

В то же время, имеющиеся результаты наложения сосудистых микроанастомозов не позволяют отказаться от этого вида вмешательства, вынуждая искать причины неудач в технике выполнения [12], методах наложения анестомоза (ELANA, excimer laser-assisted nonocclusive anastomosis) [13], сроках исполнения, адекватности дезагрегантной терапии или, к примеру, в особенностях сосудистого протока [14, 15]. Иными словами, методика жива, отстояла свое право на существование и в настоящее время находится в стадии модернизации и пересмотра показаний к применению с целью повышения эффективности и безопасности лечения.

Цель исследования. Оценить результаты хирургического лечения пациентов методом создания интра-интракраниальной анестомозов на момент выписки, а также охарактеризовать причины послеоперационных осложнений.

Материалы и методы.
Общая характеристика исследования.
В исследованиях участвовали все пациенты ФГБУ Федерального центра нейрохирургии г. Новосибирск, которым был создан интра-интракраниальный микроанастомоз (ИИКМА) непосредственно или при участии автора статьи (Дубового А.В.) в период с августа 2013 года по июль 2017 года. Аномалистические, клинические и нейровизуализационные данные были собраны в течение периода госпитализации. Всем пациентам проводилась дезагрегантная (защищенными препаратами Аспирина в дозе 75-100 мг в сутки) и антигипертензивная терапия. В объеме предоперационного обследования (до и в период госпитализации) входили: МРТ головного мозга, КТ-ангиография (МР-ангиография), КТ-перфузионное исследование, церебральная ангиография (опция). Создание анестомозов проводили по правилам классической техники [16-18]. Функциональность анестомозов подтверждалась интраоперационно при помощи контактной допплерографии, ICG-видеоангиографии (indocyanine green), а также данными контрольного КТ-ангиографического исследования, проводимого в раннем послеоперационном периоде (на 1-4 сутки после операции).

Пациентам с неосложненным послеоперационным периодом было рекомендовано выполнить контрольное нейровизуализационное исследование через 6 месяцев после выписки из стационара, пациентам с осложненным послеоперационным периодом — через 1 месяц после выписки. Для оценки функционального исхода использовали модифицированную шкалу Rankin (mRS), изучение неврологического статуса до и после операции осуществлялось лицом, не зависимым от оперирующего хирурга. Также указывали данные об осложнениях, летальных исходах и повторных хирургических вмешательствах. Послеоперационные осложнения классифицированы по Ibañez F.A. [19]. Данное исследование является ретроспективным. Кроме того, предоперационное обследование и послеоперационный контроль не подчинены единому алгоритму вследствие выбора данного вида хирургического вмешательства (создание ИИКМА) непосредственно в ходе операции и потребности в выполнении различных видов нейровизуализационных исследований в различные сроки в зависимости от динамики клинической картины.

Показания к созданию ИИКМА.
Решение о выполнении реваскуляризирующего вмешательства в большинстве случаев было при-
вия интраоперационно в ходе неудачных попыток применения иных методов выключения из кровотока сложных аневризм. Указанные аневризмы обладали одним или несколькими из перечисленных особенностей: атеросклеротически изменена шейка аневризмы/осцифирована/склерозирована (пациенты №2, 3, 4, 5, 14), что делало невозможным клипирование без дефекта кровотока по несущему сосуду; широкая шейка (пациенты №4, 9, 13); фузионная аневризма (пациенты №5, 6, 7, 8, 12, 13, 15); присущий дефект стенки вследствие разры ва аневризмы с распространением на эффективную веть (пациент №10); тромбоз полости аневризмы с распространением на эффективную веть с ее окклюзийей (пациент №11); расположение крупных эфферентов в области шейки, тела или купола аневризмы (пациенты №6, 4, 5, 8).

Характеристика оперативного вмешательства.

В каждом из случаев операция проводилась в условиях комбинированной многокомпонентной сбалансированной анестезии с использованием ИВЛ (искусственной вентиляции легких), жесткой фиксации головы пациента в скобе Mayfield или Sugita. Средняя продолжительность вмешательства составила 9 часов (от 4ч 35мин до 16ч 10мин). Средняя интраоперационная кровопотеря составила 250 мл (от 50 до 550 мл).

Результаты.

У 15 пациентов (7 мужчин, 8 женщин; средний возраст составил 46,7 лет (от 6 до 66 лет)) было создано 16 интраинтракраниальных микроанастомозов. Среди них: 6 анастомозов типа in situ, 9 реанастомозов, 1 ренсплантация по классификации Lawton M. [11].

Средний период наблюдения составил 15 месяцев (от 1 месяца до 3 лет (табл. 1)). Анастомозы накладывались по поводу 6 разорвавшихся и 9 неразорвавшихся аневризм средним размером 21,6 мм (от 4 до 44 мм). Сравнительные ЭИКМА анастомозы были созданы у 9 пациентов в ходе операции.

Средняя продолжительность госпитализации — 11,7 койко-дней (от 4 до 30).

В послеоперационном периоде выявлены осложнения у 5 пациентов (по классификации F.A. Ibáñez) [19]: Острое нарушение мозгового кровообращения (ОНМК) по ишемическому типу в обеих передних мозговых артериях (ПМА) (пациент №2, Grade IVa sprung), ОНМА в бассейне правой ВСА (пациент №4, Grade IIIa), ОНМК по геморрагическому типу в лобной доле слева (пациент №11, Grade IIb), ОНМК по ишемическому типу в бассейне левой средней мозговой артерии (СМА) (пациент №12, Grade IIIa), бронхоспазмы S6 и S2 сегментов правого легкого (Grade IIIa, пациент №7). Смертные случаи: 1 (пациент №2), смерть наступила в результате послеоперационного осложнения в зоне вмешательства.

Сопоставляя более подробно прямые послеоперационные осложнения:

У пациента №2 в день операции по окончании медикаментозной седации отмечалось угнетение уров-
<table>
<thead>
<tr>
<th>№</th>
<th>Возраст/ Пол</th>
<th>Основное заболевание</th>
<th>Жалобы и неврологический статус</th>
<th>Preop mRS</th>
<th>Postop mRS&lt;sub&gt;5&lt;/sub&gt;/mRS&lt;sub&gt;6&lt;/sub&gt;</th>
<th>Прямые осложнения</th>
<th>Контрольное исследование</th>
<th>FA</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>15M[20]</td>
<td>Анеvrизма дМ1, САК от 2009</td>
<td>ГБ, С-гемипарез 46, С-прозопарез, Ретресс ГБ, без дополнительного дефицита</td>
<td>2</td>
<td>2/2</td>
<td>нет</td>
<td>ЦАГ: анестомоз проходим, анеvrизма не контрастируется</td>
<td>3y&lt;sup&gt;+&lt;/sup&gt;</td>
</tr>
<tr>
<td>2</td>
<td>52M</td>
<td>Анеvrизма сАА АсоА</td>
<td>ГБ, статус Н</td>
<td>Сознание 8-9 ШКГ, триплегия</td>
<td>1</td>
<td>6/6</td>
<td>ОНМК по ишемическому типу в обеих ПМА (Grade IVsurg)</td>
<td>КТА: тромбоз анестомоза, ишемия в бассейнах обеих ПМА</td>
</tr>
<tr>
<td>3</td>
<td>6M</td>
<td>Анеvrизма дМ2</td>
<td>Задержка речевого развития, одновозрастный эпиприступ. Дизартрия, в остаточном статусе - Н</td>
<td>Дизартрия сохраняется, без дополнительного дефицита</td>
<td>2</td>
<td>2/1</td>
<td>нет</td>
<td>КТА: анестомоз проходим</td>
</tr>
<tr>
<td>4</td>
<td>60M</td>
<td>Анеvrизма С5чер&lt;sup&gt;[21]&lt;/sup&gt;</td>
<td>ГБ, статус Н</td>
<td>ГБ, С-гемипарез 0-36</td>
<td>1</td>
<td>4/abs</td>
<td>ОНМК по ишемическому типу в бассейне правой ВСА (Grade IIIa)</td>
<td>КТА+перфузия: тромбоз анестомоза, ишемия</td>
</tr>
<tr>
<td>5</td>
<td>66Ж</td>
<td>Анеvrизма дМ1-М2, ОНМК по ишемическому типу СМА от 2014</td>
<td>Эпиоэды афазии, С-монопарез до 46, С-гипестетия лица; статус Н</td>
<td>Без дополнительного дефицита</td>
<td>2</td>
<td>2/1</td>
<td>нет</td>
<td>КТА: анестомоз проходим</td>
</tr>
<tr>
<td>6</td>
<td>37Ж[22]</td>
<td>Анеvrизма сМ1</td>
<td>Моторная афазия, статус Н</td>
<td>Нарастание выраженности афазии</td>
<td>2</td>
<td>2/1</td>
<td>нет</td>
<td>КТА: Анестомоз проходим</td>
</tr>
<tr>
<td>7</td>
<td>14M</td>
<td>Анеvrизма сМ2</td>
<td>ГБ, статус Н</td>
<td>Ретресс ГБ, без дополнительного дефицита</td>
<td>1</td>
<td>1/0</td>
<td>нет</td>
<td>КТА: Анестомоз проходим</td>
</tr>
<tr>
<td>8</td>
<td>46Ж</td>
<td>Анеvrизмы АсоА, сА2; САК от 1988,1989, ОНМК по ишемическому типу</td>
<td>ГБ, нижний паралпаз 46, ВАС&lt;sup&gt;+&lt;/sup&gt;</td>
<td>Ретресс ГБ и ВАС</td>
<td>3</td>
<td>3/abs</td>
<td>нет</td>
<td>КТА: Анестомоз проходим, анеvrизма не контрастируется</td>
</tr>
<tr>
<td>№</td>
<td>БСВ</td>
<td>Наименование состояния</td>
<td>Когнитивные нарушения, статус N</td>
<td>Без дополнительного дефицита</td>
<td>КТА: Аналомоз проходим, аневризма не контрастируется</td>
<td>1у</td>
<td></td>
<td></td>
</tr>
<tr>
<td>----</td>
<td>-----</td>
<td>------------------------</td>
<td>---------------------------------</td>
<td>-----------------------------</td>
<td>------------------------------------------------</td>
<td>----</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>63Ж</td>
<td>Анеvreизма dA1–A2</td>
<td></td>
<td></td>
<td></td>
<td>1у</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>58Ж</td>
<td>Анеvreизма M3, САК от 2016</td>
<td>Умеренное отхождение, минимум синдром</td>
<td>Ясное сознание, статус N</td>
<td>МР-А: Аналомоз проходим, геморрагическое пропитывание в левой лобной доле</td>
<td>6мес+</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>65Ж</td>
<td>Анеvreизма sM2-M3, САК от 2015</td>
<td>ГБ, статус N</td>
<td>Регресс ГБ, сенсомоторная афазия, дилюопарез</td>
<td>Геморрагическая трансформация лобной доли, ток (Grade IIIb)</td>
<td>1у</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>64М</td>
<td>Анеvreизма sM3</td>
<td>ГБ, ВАС+</td>
<td>ГБ, сенсомоторная афазия</td>
<td>ОИМК по ишемическому типу (Grade IIIb)</td>
<td>3мес+</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>62Ж</td>
<td>Анеvreизма p1(sPICA), САК от 2016</td>
<td>ГБ, статус N</td>
<td>Регресс ГБ, без дополнительного дефицита</td>
<td>КТА: тромбоз аналамоза, иншемия в бассейне СМА</td>
<td>3мес</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>59М</td>
<td>Анеvreизма dM1-M2, ОИМК по ишемическому типу от 2005</td>
<td>ГБ, S-гемипарез от 3 до 80 в кости, проопарез, ВАС+</td>
<td>Регресс ГБ, ВАС, без дополнительного дефицита</td>
<td>КТА: Аналомоз проходим, аневризма не контрастируется</td>
<td>3мес</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>43Ж</td>
<td>Анеvreизма p2 (sPICA), ОИМК по геморрагическому типу от 2017</td>
<td>ГБ, статус N</td>
<td>Безд дополнительного дефицита</td>
<td>КТА: Аналомоз проходим, аневризма не контрастируется</td>
<td>1мес</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Сокращения: М-мужчина; Ж-женщина; d( dexter)-справа; s(sinister)-слева; f (fusiforma)-фузуформная; S(saccular) – мешотчатая; ICA-внутренняя сонная артерия; ECA-наружная сонная артерия; IC-S – экстра-интракраниальный микроанастомоз; IC-IC – интра-интракраниальный микроанастомоз; ОИМК – острое нарушение мозгового кровообращения; f(frontal) – лобный; t(temporal) – висцериальный; preop (preoperative) – предоперационный; postop(postoperative) – послеоперационный; САК- субарахноидальное кровоизлияние; НН – классификация САК по Hunt-Hess; ГБ– головная боль; ВАС- вестибулоатахаический синдром; Н( norma) – без особенностей; КТА- кт-ангография; ЦАГ - церебральная ангиография; mRS²/mRS³ – оценка состояния по шкале Rankin, f-при выписке, fa- при контрольном опросе; abs – выбыл из исследования.
<table>
<thead>
<tr>
<th>Пациент №</th>
<th>Возраст/пол</th>
<th>Локализация анеvrизма</th>
<th>Морфология анеvrизма</th>
<th>Способ выключения анеvrизма</th>
<th>Тип ИС-ИС</th>
<th>Биссеинезы</th>
<th>Скарятовочный апопсомоз</th>
<th>Краинотомия</th>
<th>Непосредственная причина прямого осложнения</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>15M</td>
<td>М1</td>
<td>F,15мм</td>
<td>трепининг</td>
<td>S-S, in situ</td>
<td>m2tM2</td>
<td>Hi-flow EC-ИС tM2</td>
<td>РС</td>
<td>нет</td>
</tr>
<tr>
<td>2</td>
<td>52M</td>
<td>AA-AoA</td>
<td>S,34мм</td>
<td>резекция участка</td>
<td>E-E, реанимоз; E-S, реимплантация</td>
<td>A1-A2; A2-A2</td>
<td>нет</td>
<td>РС</td>
<td>Тромбоз</td>
</tr>
<tr>
<td>3</td>
<td>6M</td>
<td>М2</td>
<td>S,30мм</td>
<td>резекция участка</td>
<td>E-E, реанимоз</td>
<td>pM2-pM2</td>
<td>нет</td>
<td>РС</td>
<td>нет</td>
</tr>
<tr>
<td>4</td>
<td>60M</td>
<td>C5chor</td>
<td>S, 30мм</td>
<td>резекция участка</td>
<td>E-E, реанимоз</td>
<td>C5chor-M1</td>
<td>EC-ИС M4</td>
<td>РС</td>
<td>Тромбоз</td>
</tr>
<tr>
<td>5</td>
<td>616J</td>
<td>M1-M2</td>
<td>F,30мм</td>
<td>резекция участка</td>
<td>E-E, реанимоз</td>
<td>M1-M2</td>
<td>нет</td>
<td>РС</td>
<td>нет</td>
</tr>
<tr>
<td>6</td>
<td>37J</td>
<td>M1</td>
<td>F,15мм</td>
<td>резекция участка</td>
<td>E-E, реанимоз</td>
<td>M1-M1</td>
<td>EC-ИС M4</td>
<td>РС</td>
<td>нет</td>
</tr>
<tr>
<td>7</td>
<td>14M</td>
<td>M2</td>
<td>F,25мм</td>
<td>резекция участка</td>
<td>E-S, in situ</td>
<td>m3tM3</td>
<td>EC-ИС M4; Hi-flow EC-ИС tM2</td>
<td>РС</td>
<td>нет</td>
</tr>
<tr>
<td>8</td>
<td>46J</td>
<td>AoA, A2</td>
<td>S 44мм,F 10мм</td>
<td>трепининг</td>
<td>S-S, in situ</td>
<td>A3-A3</td>
<td>EC-ИС A5</td>
<td>BLSFC</td>
<td>нет</td>
</tr>
<tr>
<td>10</td>
<td>58J</td>
<td>M3</td>
<td>S,4мм</td>
<td>резекция участка</td>
<td>E-E, реанимоз</td>
<td>M3-M3</td>
<td>нет</td>
<td>РС</td>
<td>нет</td>
</tr>
<tr>
<td>11</td>
<td>65J</td>
<td>M2-M3</td>
<td>S,10мм</td>
<td>резекция участка</td>
<td>E-E, реанимоз</td>
<td>M2-M3</td>
<td>EC-ИС M4</td>
<td>РС</td>
<td>ретракционный венозный инфаркт</td>
</tr>
<tr>
<td>12</td>
<td>64M</td>
<td>M3</td>
<td>F,10мм</td>
<td>резекция участка</td>
<td>E-E, реанимоз</td>
<td>M3-M3</td>
<td>EC-ИС M3</td>
<td>РС</td>
<td>Тромбоз</td>
</tr>
<tr>
<td>13</td>
<td>62J</td>
<td>p1(PICA)</td>
<td>F,4мм</td>
<td>трепининг</td>
<td>S-S, in situ</td>
<td>p3-p3(PICA-PICA)</td>
<td>нет</td>
<td>MSOC</td>
<td>нет</td>
</tr>
<tr>
<td>14</td>
<td>59M</td>
<td>M1-M2</td>
<td>S, 18мм</td>
<td>резекция участка</td>
<td>E-E, реанимоз</td>
<td>M1-M2</td>
<td>EC-ИС M3</td>
<td>РС</td>
<td>нет</td>
</tr>
<tr>
<td>15</td>
<td>43J</td>
<td>p2(PICA) [23]</td>
<td>F, 6мм</td>
<td>резекция участка</td>
<td>E-E, реанимоз</td>
<td>p1-p3(PICA-PICA)</td>
<td>нет</td>
<td>MSOC</td>
<td>нет</td>
</tr>
</tbody>
</table>

Сокращения:
M-музичка; Ж-женщина; d(exenter)-справа; s(sinister)-слева; f(fusiform)-фузiformная; s(saccular)-мешовидная; ИСА-интравенозная сонная артерия; ИСЕ-интравенозная сонная артерия; ИСЕ-ИС-интравенозно-интравенозная микротрансамиа; ИСН-интравенозно-интравенозная микротрансамиа; ОИМК-острое нарушение мозгового кровообращения; f(frontal)-лобный; t(temporal)-височный; S-S (side-to-side)-апопсомоз бок-в-бок; E-E (end-to-end)-апопсомоз конец-в-конец; E-S (end-to-side)-апопсомоз конец-в-бок; C5chor-коронарный сегмент внутренней сонной артерии; PC(aperipheral craniotomy)-периферическая краинотомия; РС (posterior inferior cerebellar artery)-ЗИМА (задняя нижняя мозжечковая артерия); БИФС(bilateral subfrontal craniotomy)-двустворчатая субфронтальная краинотомия; ВФТБС(bifrontal transbasal craniotomy)-бифронтальная трансбазальная краинотомия; МСОС(medial suboccipital craniotomy)-срединная субокципитальная краинотомия.
Клинический случай-иллюстрация.
Женщина 63 лет (пациент №9) поступила в ФГБУ ФЦН г. Новосибирск 12.02.2016 без предъявления активных жалоб на момент госпитализации. Из анамнеза: около 1,5 лет беспокоит периодическая умеренно интенсивная головная боль в затылочной области, сопровождающаяся головокружением и шаткостью походки. Находилась под наблюдением невролога по месту жительства, прошла курс консервативной терапии с незначительным положительным эффектом. Согласно рекомендации невролога, выполнена МРТ головного мозга, выявлена гигантская частично тромбированная аневризма A1-A2 сегментов справа размерами 30,5*23,7 мм (рис. 1, рис. 2А). Пациентка была госпитализирована в нейрохирургическое отделение городской клинической больницы с целью выполнения диагностики церебральной ангиографии, где подтверждено наличие мешотчатой аневризмы правой ПМА.
Пациентка обратилась на консультацию в ФГБУ ФЦН г. Новосибирск, госпитализирована для выполнения оперативного вмешательства в плановом порядке.
В неврологическом статусе на момент поступления: умеренно выраженные мнестико-интеллектуальные нарушения, в остальном – без особенностей. В ходе планирования оперативного вмешательства выполнена МСКТ головного мозга и МСКТ-ангиография интракраниальных сосудов, выявлена мешотчатая частично тромбированная аневризма A1-A2 сегментов правой ПМА (рис. 2Б).
На третий сутки пребывания в стационаре после комплексного обследования и предоперационной подготовки (дезагрегантная терапия проводилась со дня госпитализации) было выполнено оперативное вмешательство в объеме бифронтальной костно-пластической трансбазальной краниотомии, создания страховочного экстра-интракраниального микроанастомоза между лобной ветвью левой по-верхностной височной артерии и A5 [21] сегментом левой ПМА, создания интра-интракраниального микроанастомоза A2-A2 (рис. 3), треппинга шейки аневризмы комплекса A1-A2 справа, тромбэкстракции из мешка аневризмы (рис. 4).

Рис. 1.
Схематическое изображение размера, положения и формы аневризмы в полости черепа: 1 – мешок аневризмы, 2 – левая ПМА, 3 – спинка турецкого седла, 4 – правый передний наклоненный отросток, 5 – базилярная артерия, 6 – правая ВСА

Рис. 2.
Результаты нейровизуализационных методов исследования: а) МРТ в T2-режиме, визуализируется гигантская частично тромбированная аневризма в макроплунарной шей; б) 3D реконструкция КТ-ангиографии, 1 – аневризма сегментов A1-A2 правой ПМА, 2 – правая ПМА, 3 – левая ПМА, 4 – правая ВСА. Обращает на себя внимание отсутствие передней соединительной артерии
Рис. 3.
Интраоперационная фотография: а) анастомоз A2-A2 до запуска кровотока, прокрашивание метиленовым синим; б) функционирующий анастомоз; 1 - левая ПМА, 2 - правая ПМА, 3 - временная клинся, стрелка - швы анастомоза

Рис. 4.
Схема операции: трещин анаевризмы с формированием A2-A2 анастомоза; 1 - полость анаевризмы, 2 - зона анастомоза, 3 - правая ВСА, 4 - левая СМА, 5 - правая ПМА, 6 - спинка турецкого седла, 7 - клинсы, 8 - левый передний наклоненный отросток

Рис. 5.
a) контрастная КТ, визуализируется артефакт от инородного тела (клипс), объемное образование межполушарной щели отсутствует; б) 3D реконструкция КТ-ангиографии, страховой ЭИКМА в A5 слева
Основанием для такого вида операции послужили: невозможность клипс-реконструкции области шейки аневризмы из-за наличия присосочных тромботических масс, а также необходимость устранения объема тромбированной аневризмы из полости 3 желудочка для восстановления нормальной ликвородинамики.

Послеоперационный период протекал без осложнений. В день операции выполнена контрольная МСКТ-ангиография: ИИКМА проходим, все отростки ЭНКМА функционируют, положение клипса адекватное, аневризма не контрастируется (рис. 5). Неврологический статус — на дооперационном уровне. Характерных эпизодов головной боли за время госпитализации не повторялось.

Обсуждение.

Во всех исследованиях, посвященных ИИКМА, обсуждается их применение для лечения сложных аневризм и опухолей, приводится алгоритмы и аргументы в пользу выбора того или иного вида анэктомоза или их комбинации, рассматриваются различные технические аспекты.

К примеру, Sanai, N., Zador, Z. с соавт. отмечают, что результаты лечения 35 пациентов, подвергшихся наложению ИИКМА, в том числе 9 аневрзом по типу интрамышечной [11]. Функциональный исход оценен по шкале исходов Глазго (GOS): летальность составила 3% (1 случай, mRS6), хорошее восстановление (GOS 5—mRS1—2) — у 74% пациентов. Ауторы высказывают мнение, что ИИКМА — это следующая ступень развития реваскуляризирующих вмешательств. ИИКМА имеют преимущества перед экстра-интракраниальными, являясь более естественными, анатомическими, не требующими в большинстве случаев забора донорских артерий, дополнительных разрезов, имеющими калибр, соответствующий как артериальному, так и венозному; не связаны с ишемическими осложнениями вследствие пережатия височной артерии. ИИКМА способны заменить традиционные ЭНКМА с превосходством при условии их тщательно продуманное применение к конкретному пациенту [24].

Опыт в наложении ИИКМА в вертебро-базилярном бассейне Abla A. с соавторами также составляет 35 пациентов. Летальность составила 6,1% (2 пациента), хороший функциональный исход (mRS 0—2) наблюдался у 76% пациентов. Осложнения в виде ОНМО по ишемическому типу возникли у 2 пациентов (6,1% случаев) [25]. Та же группа авторов, представляя результаты наложения ИИКМА в бассейне ПМА, упоминают о предпочтительном использовании именно ИИКМА, а не ЭНКМА, несмотря на преобладание в мировой литературе исследований, что работы посвящены ЭНКМА, как методу реваскуляризации в любом бассейне. Итог наложения ИИКМА в ПМА — 60% пациентов имеют хороший функциональный исход (mRS 0—2). Кроме того, на основании полученных данных сделано предположение, что анэктомозы в бассейне ПМА с непрямой окклюзий аневризмы составляют конкуренцию прямому киплированию [15].

Tayebi Meybodi A., прооперировав 17 пациентов с созданием ИИКМА в бассейне СМА, описывают собственный алгоритм выбора типа анэктомоза в зависимости от расположения аневризмы по отношению к коре и развитию СМА. Интересным штрихом исследования является замечание авторов о том, что с их точки зрения, создание профилактических или страховых ЭНКМА в бассейне СМА (ПВА и морозовой височной артерии—M4) не оправдывает себя, требует дополнительных затрат времени и сил хирурга и потому в данной работе принципиально не использовались. В результате, среди прооперированных пациентов удовлетворительный функциональный исход (мRS) наблюдался в 17,6% случаев, хороший функциональный исход — в 82,4% случаев. Летальных исходов не было [7]. Следует отметить, что в ряде работ обсуждаются преимущества и недостатки того или иного вида сосудистого протеза. Однако ни в одной из них не указаны причины потребности в протезе и выбор конкретного донорского сосуда. Ramanathan D. с соавторами акцентируют внимание на том, что среди 9 ИИКМА по типу интранстроевой все анэктомозы с длиной замещающей частью (более 2,5 см, 3 случая) окклюзировались в позднем послеоперационном периоде, в то время как короткие протезы сохранили свою проходимость [10].

Также, как и Abla A. с соавторами, мы считаем, что в случае необходимости реваскуляризации в бассейне ПМА экстра-интракраниальный анэктомоз возможно эффективно и более «анатомично» заменить ИИКМА. Дополнительную сложность для хирурга при создании ЭНКМА в таких случаях представляет необходимость мобилизации и перемещения ветвей ПВА или сосудистого протеза (лучевой артерии) к корковым ветвям лобной доли. Эта тактическая особенность включает в себя вероятность подачи недо статочного объема крови вследствие уменьшения диаметра донорского сосу да и развития последующей функциональной несостоятельности аневризмы: импенемии ткани на фоне формального проходимого анэктомоза. Возможно, потенциальным решением этой проблемы может стать применение тканей-инженерных сосудистых протезов — естественных или искусственных, обладающих необходимым диаметром и сохраняющих атромбофункциональные свойства вне зависимости от длины (в отличие от венозных графтов). Однако описываемые сосудистые протезы в настоящее время находятся на стадии доклинических испытаний [26, 27].

Заключение.

В нейрохирургической практике объективная необходимость создания интракраниальных анэктомозов возникает нечасто. Однако в случаях сложных и гигантских аневризм, неопаерабельных опухолей основанием черепа данный метод остается
ОРИГИНАЛЬНЫЕ СТАТЬИ

основным, и, вероятно, до настоящего времени не
заменяемым. Успешность выполнения подобных опе-
раций и частота осложнений, по данным различных
авторов, в значительной степени зависит от опыта
хирурга. Необходимо отметить, что выбор конкрет-
ного вида вмешательства (ЭИКМА, ИИКМ или
ИКМА–ЭИКМ), длина и вид сосудистого протеза)
происходит скорее эмпирически, нежели основывае-
ется на четких расчетах, данных об исходной перфузи-
ции мозга, компенсаторных возможностях, перфузион-
ных свойств той или иной комбинации анастомозов и
пр. По нашим данным, представленным в данном ис-
следовании, частота тромбирования ИИКМа доста-
точно высока, что вынуждает осторожно относиться
c методике и вынуждает рассматривать иные, менее
физиологичные, нежели создание ИИКМа, способы
реконструкции церебрального сосудистого русл.
Мы полагаем, сама идея создания ИИКМа вполне
жизнеспособна и данный вид анатомоза может быть
применен. Причины неудач использования ИИКМа,
вероятно, лежат в неполном понимании патофизиоло-
гии искусственно прерванного, а затем вновь
восстановленного сосуда. Не исключено, что прохо-
dимость анатомозов возможно корректировать с по-
мощью фармакологических средств или, к примеру, в
будущем - совершенно новых, еще не использующих-
ся в нейрохирургической практике продуктов ткане-
вой инженерии.

Литература

1. Pool DP, Potts DG. Aneurysms and Arteriovenous Anomalies of the

2. Крылов В.В., Нахабин О.Ю., Лукьячник В.А., et al. История
   развития реканализирующей хирургии головного мозга. In:
   Крылов В.В., Леменев В.Л., eds. Операция Реканализации
   Головного Мозга В Современной Нейрохирургии. Москва:

   Symptomatic Carotid Endarterectomy Trial: surgical results in 1415

4. Randomised trial of endarterectomy for recently symptomatic carotid
   stenosis: final results of the MRC European Carotid Surgery Trial

5. Young B., Moore W.S., Robertson J.T., et al. An analysis of periop-
   erative surgical mortality and morbidity in the asymptomatic
   carotid atherosclerosis study. ACAS Investigators. Asymptomatic

6. Halliday A.W., Thomas D.J., Mansfield A.O. The asymptomatic

7. Tayebi Meybodi A., Huang W., Benet A., Kola O., Lawton M.T.
   Bypass surgery for complex middle cerebral artery aneurysms: an

   bypass surgery for stroke prevention in hemodynamic cerebral
   ischemia: the Carotid Occlusion Surgery Study randomized trial.

9. Krylov VV., Polunina N.A., Luk’yanchikov V.A., Grigor’eva E.V.,
   Guseinova G.K. [The use of combined revascularization surgery for
   successful elimination of a middle cerebral artery aneurysm]. Zh

    L.N. Cerebral Bypasses for Complex Aneurysms and Tumors.

11. Lawton M., Sanai N. IC-IC bypasses for complex brain aneurysms. In:
    Abdulauf SI, ed. Cerebral Revascularization: Techniques in Extracranial-

12. Harashina T., Iriyagay A. Expansion of smaller vessel diameter by
    fish-mouth incision in microvascular anastomosis with marked size

    Doornmaat T.P., Tulleen C.A.F. Excimer laser-assisted nonocclusive
    anastomosis. An emerging technology for use in the creation of
    intracranial-intracranial and extracranial-intracranial cerebral